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1 Topological and metric spaces

1.1 Basic De�nitions

De�nition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of
subsets of S is called a topology i� it has the following properties:

• ∅ ∈ T and S ∈ T .

• Let {Ui}i∈I be a family of elements in T . Then
⋃

i∈I Ui ∈ T .

• Let U, V ∈ T . Then U ∩ V ∈ T .

A set equipped with a topology is called a topological space. The elements of
T are called the open sets in S. A complement of an open set in S is called
a closed set.

De�nition 1.2. Let S be a topological space and x ∈ S. Then a subset
U ⊆ S is called a neighborhood of x i� it contains an open set which in turn
contains x.

De�nition 1.3. Let S be a topological space and U a subset. The closure

U of U is the smallest closed set containing U . The interior
◦
U of U is the

largest open set contained in U . U is called dense in S i� U = S.

De�nition 1.4 (base). Let T be a topology. A subset B of T is called a
base of T i� the elements of T are precisely the unions of elements of B. It
is called a subbase i� the elements of T are precisely the �nite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of

a topology on S i� it satis�es all of the following properties:

• ∅ ∈ B.

• For every x ∈ S there is a set U ∈ B such that x ∈ U .

• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of B
such that U ∩ V =

⋃
α∈AWα.

Proof. Exercise.

De�nition 1.6. Let S be a topological space and p a point in S. We call a
family {Uα}α∈A of open neighborhoods of p a neighborhood base at p i� for
any neighborhood V of p there exists α ∈ A such that Uα ⊆ V .

De�nition 1.7 (Continuity). Let S, T be topological spaces. A map f : S →
T is called continuous i� for every open set U ∈ T the preimage f−1(U) in
S is open. We denote the space of continuous maps from S to T by C(S, T ).
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Proposition 1.8. Let S, T, U be topological spaces, f ∈ C(S, T ) and g ∈
C(T,U). Then, the composition g ◦ f : S → U is continuous.

Proof. Immediate.

De�nition 1.9. Let T1, T2 be topologies on the set S. Then, T1 is called
�ner than T2 and T2 is called coarser than T1 i� all open sets of T2 are also
open sets of T1.

De�nition 1.10 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U . This is called the induced topology on U .

Exercise 1. Show that the induced topology is the coarsest topology on U
making the inclusion U ↪→ S continuous.

De�nition 1.11 (Product Topology). Let S be the cartesian product S =∏
α∈I Sα of a family of topological spaces. Consider subsets of S of the form∏
α∈I Uα where �nitely many Uα are open sets in Sα and the others coincide

with the whole space Uα = Sα. These subsets form the base of a topology
on S which is called the product topology.

Exercise 2. Show that alternatively, the product topology can be charac-
terized as the coarsest topology on S =

∏
α∈I Sα such that all projections

S � Sα are continuous.

Proposition 1.12. Let S, T,X be topological spaces and f ∈ C(S × T,X),
where S × T carries the product topology. Then the map fx : T → X de�ned

by fx(y) = f(x, y) is continuous for every x ∈ S.

Proof. Fix x ∈ S. Let U be an open set in X. We want to show that
W := f−1

x (U) is open. We do this by �nding for any y ∈ W an open
neighborhood of y contained in W . If W is empty we are done, hence assume
that this is not so. Pick y ∈ W . Then (x, y) ∈ f−1(U) with f−1(U) open
by continuity of f . Since S × T carries the product topology there must be
open sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U).
But clearly Vy ⊆ W and we are done.

De�nition 1.13 (Quotient Topology). Let S be a topological space and ∼
an equivalence relation on S. Then, the quotient topology on S/∼ is the
�nest topology such that the quotient map S � S/∼ is continuous.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdor�

property.
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De�nition 1.14 (Hausdor�). Let S be a topological space. Assume that
given any two distinct points x, y ∈ S we can �nd open sets U, V ⊂ S such
that x ∈ U and y ∈ V and U ∩V = ∅. Then, S is said to have the Hausdor�
property. We also say that S is a Hausdor� space.

De�nition 1.15. Let S be a topological space. S is called �rst-countable

i� there exists a countable neighborhood base at each point of S. S is called
second-countable i� the topology of S admits a countable base.

De�nition 1.16 (open cover). Let S be a topological space and U ⊆ S
a subset. A family of open sets {Uα}α∈A is called an open cover of U i�
U ⊆

⋃
α∈A Uα.

Proposition 1.17. Let S be a second-countable topological space and U ⊆ S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise.

De�nition 1.18. Let S be a topological space and U ⊆ S a subset. U is
called compact i� every open cover of U contains a �nite subcover.

Proposition 1.19. A closed subset of a compact space is compact. A com-

pact subset of a Hausdor� space is closed.

Proof. Exercise.

Proposition 1.20. The image of a compact set under a continuous map is

compact.

Proof. Exercise.

1.3 Sequences and convergence

De�nition 1.21 (Convergence of sequences). Let x := {xn}n∈N be a se-
quence of points in a topological space S. We say that x has an accumulation

point (or limit point) p i� for every neighborhood U of x we have xk ∈ U
for in�nitely many k ∈ N. We say that x converges to a point p i� for any
neighborhood U of p there is a number n ∈ N such that for all k ≥ n :
xk ∈ U .

Proposition 1.22. Let S, T be topological spaces and f : S → T . If f
is continuous, then for any p ∈ S and sequence {xn}n∈N converging to p,
the sequence f{(xn)}n∈N in T converges to f(p). Conversely, if S is �rst

countable and for any p ∈ S and sequence {xn}n∈N converging to p, the

sequence f{(xn)}n∈N in T converges to f(p), then f is continuous.

Proof. Exercise.
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Proposition 1.23. Let S be Hausdor� space and {xn}n∈N a sequence in S
which converges to a point x ∈ S. Then, {xn}n∈N does not converge to any

other point in S.

Proof. Exercise.

De�nition 1.24. Let S be a topological space and U ⊆ S a subset. The
set U

s
of points to which sequences of elements of U converge is called the

sequential closure of S.

Proposition 1.25. Let S be a topological space and U ⊆ S a closed subset.

Let x be a sequence of points in U which has an accumulation point p ∈ S.
Then, p ∈ U .

Proof. Suppose p /∈ U . Since U is closed S \ U is an open neighborhood of
p. But S \ U does not contain any point of x, so p cannot be accumulation
point of x. This is a contradiction.

Corollary 1.26. Let S be a topological space and U a subset. Then, U
s ⊆ U .

Proof. Immediate.

Proposition 1.27. Let S be a �rst-countable topological space and U a sub-

set. Then, U
s
= U .

Proof. Exercise.

De�nition 1.28. Let S be a topological space and U ⊆ S a subset. U is
said to be limit point compact i� every sequence in S has an accumulation
point (limit point) in U . U is called sequentially compact i� every sequence
of elements of U contains a subsequence converging to a point in U .

Proposition 1.29. Let S be a �rst-countable topological space and x =
{xn}n∈N a sequence in S with accumulation point p. Then, x has a subse-

quence that converges to p.

Proof. By �rst-countability choose a countable neighborhood base {Un}n∈N
at p. Now consider the family {Wn}n∈N of open neighborhoods Wn :=⋂n

k=1 Uk at p. It is easy to see that this is again a countable neighborhood
base at p. Moreover, it has the property that Wn ⊆ Wm if n ≥ m. Now,
Choose n1 ∈ N such that xn1 ∈ W1. Recursively, choose nk+1 > nk such
that xnk+1

∈ Wk+1. This is possible since Wk+1 contains in�nitely many
points of x. Let V be a neighborhood of p. There exists some k ∈ N such
that Uk ⊆ V . By construction, then Wm ⊆ Wk ⊆ Uk for all m ≥ k and
hence xnm ∈ V for all m ≥ k. Thus, the subsequence {xnm}m∈N converges
to p.

Corollary 1.30. The notions of limit point compactness and sequential com-

pactness coincide for �rst-countable spaces.
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Proof. Immediate.

Proposition 1.31. A compact set is limit point compact.

Proof. Consider a sequence x in a compact set S. Suppose x does not have
an accumulation point. Then, for each point p ∈ S we can choose an open
neighborhood Up which contains only �nitely many points of x. However, by
compactness, S is covered by �nitely many of the sets Up. But their union
can only contain a �nite number of points of x, a contradiction.

1.4 Metric and pseudometric spaces

De�nition 1.32. Let S be a set and d : S × S → R+
0 a map with the

following properties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)

• d(x, x) = 0 ∀x ∈ S.

Then d is called a pseudometric on S. S is also called a pseudometric space.
Suppose d also satis�es

• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (de�niteness)

Then d is called a metric on S and S is called a metric space.

De�nition 1.33. Let S be a pseudometric space, x ∈ S and r > 0. Then
the set Br(x) := {y ∈ S : d(x, y) < r} is called the open ball of radius r
centered around x in S. The set Br(x) := {y ∈ S : d(x, y) ≤ r} is called the
closed ball of radius r centered around x in S.

Proposition 1.34. Let S be a pseudometric space. Then, the open balls

in S together with the empty set form the basis of a topology on S. This

topology is �rst-countable and such that closed balls are closed. Moreover,

the topology is Hausdor� i� S is metric.

Proof. Exercise.

De�nition 1.35. A topological space is called (pseudo)metrizable i� there
exists a (pseudo)metric such that the open balls given by the (pseudo)metric
are a basis of its topology.

Proposition 1.36. In a pseudometric space any open ball can be obtained as

the countable union of closed balls. Similarly, any closed ball can be obtained

as the countable intersection of open balls.

Proof. Exercise.
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Proposition 1.37. Let S be a set equipped with two pseudometrics d1 and

d2. Then, the topology generated by d2 is �ner than the topology generated by

d1 i� for all x ∈ S and r1 > 0 there exists r2 > 0 such that B2
r2(x) ⊆ B1

r1(x).
In particular, d1 and d2 generate the same topology i� the condition holds

both ways.

Proof. Exercise.

Proposition 1.38 (epsilon-delta criterion). Let S, T be pseudometric spaces

and f : S → T a map. Then, f is continuous i� for every x ∈ S and every

ε > 0 there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).

Proof. Exercise.

1.5 Elementary properties of pseudometric spaces

Proposition 1.39. Let S be a pseudometric space and x := {xn}n∈N a

sequence in S. Then x converges to p ∈ S i� for any ε > 0 there exists an

n0 ∈ N such that for all n ≥ n0 : d(xn, p) < ε.

Proof. Immediate.

De�nition 1.40. Let S be a pseudometric space and x := {xn}n∈N a se-
quence in S. Then x is called a Cauchy sequence i� for all ε > 0 there exists
an n0 ∈ N such that for all n,m ≥ n0 : d(xn, xm) < ε.

Exercise 3. Give an example of a set S, a sequence x in S and two metrics
d1 and d2 on S that generate the same topology, but such that x is Cauchy
with respect to d1, but not with respect to d2.

Proposition 1.41. Any converging sequence in a pseudometric space is a

Cauchy sequence.

Proof. Exercise.

Proposition 1.42. Suppose x is a Cauchy sequence in a pseudometric space.

If p is accumulation point of x then x converges to p.

Proof. Exercise.

De�nition 1.43. Let S be a pseudometric space and U ⊆ S a subset. If
every Cauchy sequence in U converges to a point in U , then U is called
complete.

Proposition 1.44. A complete subset of a metric space is closed. A closed

subset of a complete pseudometric space is complete.

Proof. Exercise.
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Exercise 4. Give an example of a complete subset of a pseudometric space
that is not closed.

De�nition 1.45 (Totally boundedness). Let S be a pseudometric space. A
subset U ⊆ S is called totally bounded i� for any r > 0 the set U admits a
cover by �nitely many open balls of radius r.

Proposition 1.46. A subset of a pseudometric space is compact i� it is

complete and totally bounded.

Proof. We �rst show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for r > 0 cover U by open balls
of radius r centered at every point of U . Since U is compact, �nitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U . Since U is compact x must have an accumulation point
p ∈ U (Proposition 1.31) and hence (Proposition 1.42) converge to p. Thus,
U is complete.

We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uα}α∈A of U that does
not admit a �nite subcovering. On the other hand, U is totally bounded and
admits a covering by �nitely many open balls of radius 1/2. Hence, there
must be at least one such ball B1 such that C1 := B1 ∩ U is not covered
by �nitely many Uα. Choose a point x1 in C1. Observe that C1 itself is
totally bounded. Inductively, cover Cn by �nitely many open balls of radius
2−(n+1). For at least one of those, call it Bn+1, Cn+1 := Bn+1 ∩ Cn is not
covered by �nitely many Uα. Choose a point xn+1 in Cn+1. This process
yields a Cauchy sequence x := {xk}k∈N. Since U is complete the sequence
converges to a point p ∈ U . There must be α ∈ A such that p ∈ Uα. Since
Uα is open there exists r > 0 such that B(p, r) ⊆ Uα. This implies, Cn ⊆ Uα

for all n ∈ N such that 2−n+1 < r. However, this is a contradiction to the
Cn not being �nitely covered. Hence, U must be compact.

Proposition 1.47. The notions of compactness, limit point compactness

and sequential compactness are equivalent in a pseudometric space.

Proof. Exercise.

Proposition 1.48. A totally bounded pseudometric space is second-countable.

Proof. Exercise.

Proposition 1.49. Let S be equipped with a pseudometric d. Then p ∼
q ⇐⇒ d(p, q) = 0 for p, q ∈ S de�nes an equivalence relation on S. The

prescription d̃([p], [q]) := d(p, q) for p, q ∈ S is well de�ned and yields a

metric d̃ on the quotient space S/∼. The topology induced by this metric on

S/∼ is the quotient topology with respect to that induced by d on S. Moreover,

S/∼ is complete i� S is complete.
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Proof. Exercise.

Exercise 5. Show the following universal property of the quotient construc-
tion given above: Let S be a pseudometric space, T be a Hausdor� space and
f : S → T a continuous map. Then, there exists a unique continuous map
f̃ : S/∼ → T such that f = f̃ ◦ q, where q is the quotient map S → S/∼.

1.6 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only
given a non-complete metric space. To this end one can construct the com-

pletion of a metric space. This is detailed in the following exercise.

Exercise 6. Let S be a metric space.

• Let x := {xn}n∈N and y := {yn}n∈N be Cauchy sequences in S. Show
that the limit limn→∞ d(xn, yn) exists.

• Let T be the set of Cauchy sequences in S. De�ne the function d̃ :
T × T → R+

0 by d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ de�nes a
pseudometric on T .

• De�ne S as the metric quotient T/∼ as in Proposition 1.49.

• Show that S is complete. [Hint: First show that given a Cauchy se-
quence x in S and a subsequence x′ of x we have d̃(x, x′) = 0. That
is, x ∼ y in T . Use this to show that for any Cauchy sequence x in
S an equivalent Cauchy Sequence x′ can be constructed which has a
speci�c asymptotic behavior. For example, x′ can be made to satisfy
d(x′n, x

′
m) < 1

min(m,n) . Now a Cauchy sequence x̂ = {x̂n}n∈N in S con-
sists of equivalence classes x̂n of Cauchy sequences in S. Given some
representative xn of x̂n show that there is another representative x′n

with speci�c asymptotic behavior. Using such representatives x′n for
all n ∈ N show that the equivalence class in S of the diagonal sequence
y := {x′nn}n∈N is a limit of x̂.]

• Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) iS : S → S. Furthermore, show that this is a
bijection i� S is complete.

De�nition 1.50. The metric space S constructed above is called the com-

pletion of the metric space S.

Proposition 1.51 (Universal property of completion). Let S be a metric

space, T a complete metric space and f : S → T an isometric map. Then,

there is a unique isometric map f : S → T such that f = f ◦iS. Furthermore,

the closure of f(S) in T is equal to f(S).

Proof. Exercise.
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1.7 Norms and seminorms

In the following K will denote a �eld which can be either R or C.

De�nition 1.52. Let V be a vector space over K. Then a map V → R+
0 :

x 7→ ‖x‖ is called a seminorm i� it satis�es the following properties:

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ V .

2. For all x, y ∈ V : ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A seminorm is called a norm i� it satis�es in addition the following property:

3. ‖x‖ = 0 =⇒ x = 0.

Proposition 1.53. Let V be a seminormed vector space over K. Then,

d(v, w) := ‖v−w‖ de�nes a pseudometric on V . Moreover, d is a metric i�

the seminorm is a norm.

Proof. Exercise.

Remark 1.54. Since a seminormed space is a pseudometric space all the
concepts developed for pseudometric spaces apply. In particular the notions
of convergence, Cauchy sequence and completeness apply to pseudonormed
spaces.

De�nition 1.55. A complete normed vector space is called a Banach space.

Exercise 7. Let S be a set and Fb(S,K) the set of bounded maps S → K.

1. Fb(S,K) is a vector space over K.

2. The supremum norm on it is a norm de�ned by

‖f‖sup := sup
p∈S

|f(p)|.

3. Fb(S,K) with the supremum norm is a Banach space.

Exercise 8. Let S be a topological space and Cb(S,K) the set of bounded
continuous maps S → K.

1. Cb(S,K) is a vector space over K.

2. Cb(S,K) with the supremum norm is a Banach space.

Proposition 1.56. Let V be a vector space with a seminorm ‖·‖V . Consider
the subset A := {v ∈ V : ‖v‖V = 0}. Then, A is a vector subspace. Moreover

v ∼ w ⇐⇒ v − w ∈ A de�nes an equivalence relation and W := V/ ∼ is a

vector space. The seminorm ‖·‖V induces a norm on W via ‖[v]‖W := ‖v‖V
for v ∈ V . Also, V is complete with respect to the seminorm ‖ · ‖V i� W is

complete with respect to the norm ‖ · ‖W .
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Proof. Exercise.

Proposition 1.57. Let V,W be seminormed vector spaces. Then, a linear

map α : V → W is continuous i� there exists a constant c ≥ 0 such that

‖α(v)‖W ≤ c‖v‖V ∀v ∈ V.

Proof. Exercise.


